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Via the hierarchy of correlations, we study the strongly interacting Fermi-Hubbard model in the Mott insulator
state and couple it to a Markovian environment that constantly monitors the particle numbers n̂↑

μ and n̂↓
μ for each

lattice site μ. As expected, the environment induces an imaginary part γ (i.e., the decay rate) of the quasiparticle
frequencies ωk → ωk − iγ , and it tends to diminish the correlations between lattice sites. Surprisingly, the
environment also steers the state of the system on intermediate timescales O(1/γ ) to a prerelaxed state very
similar to the prethermalized state after a quantum quench (i.e., suddenly switching on the hopping rate J). Full
relaxation or thermalization occurs via local on-site heating and takes much longer.

DOI: 10.1103/PhysRevB.99.155110

I. INTRODUCTION

Understanding the quantum dynamics of strongly inter-
acting many-body systems is one of the major challenges of
contemporary physics. Compared to weakly or noninteracting
systems, strong interactions can induce new and fascinating
phenomena. One example is the Mott insulator state: For a
fermionic lattice with a half-filled band, one would expect
conducting (i.e., metallic) behavior—but strong interactions
can make this system insulating [1–3].

While the ground or thermal equilibrium state of strongly
interacting systems may already display nontrivial properties,
their nonequilibrium dynamics can pose even more diffi-
cult problems, which we are just beginning to understand.
A conceptually clear and frequently studied example is a
quantum quench, where one starts in the ground state of a
given Hamiltonian and then suddenly (or nonadiabatically)
changes one of the parameters of this Hamiltonian. After
that, the initial state will no longer be the ground state
in general, and the time dependence after such a global
excitation has been studied in various works; see, e.g.,
[4–30].

One of the surprises and unexpected results of such
nonequilibrium dynamics is the phenomenon of prethermal-
ization: Even in systems that are expected to thermalize after
a global excitation, this thermalization dynamics can occur
in several stages with different timescales. Local observables
that oscillate on short timescales (after the quench) approach a
quasistatic value on intermediate timescales—which is, how-
ever, different from their thermal value. Full thermalization
(if it occurs) requires much longer timescales. As an intuitive
picture, prethermalization can be understood as dephasing
of the quasiparticle excitations, while full thermalization
requires the exchange of energy and momentum between
the quasiparticles. How strongly interacting quantum many-
body systems equilibrate is a very important and not fully
solved question that has far-reaching consequences, ranging
from solid-state devices such as the proposed Mott transistor

[31–33] or other switching processes to the observability of
quark-gluon plasma.

So far, equilibration and thermalization dynamics of
strongly interacting quantum many-body systems after quan-
tum quenches and related questions have mostly been dis-
cussed in closed quantum systems undergoing a unitary evolu-
tion [4–24,34–52]. However, every real system is always cou-
pled to an environment, which can also affect the equilibration
and thermalization dynamics. To start filling this gap, we
consider a prototypical example (1) for a strongly interacting
quantum many-body system, and we study its nonequilibrium
dynamics after coupling in an environment that is assumed to
be Markovian.

II. THE MODEL

The lattice system under consideration is described by the
Fermi-Hubbard Hamiltonian (h̄ = 1)

Ĥ = − 1

Z

∑
μ,ν,s

Jμν ĉ†
μ,sĉν,s + U

∑
μ

n̂↑
μn̂↓

μ, (1)

where ĉ†
μ,s and ĉν,s are the fermionic creation and annihilation

operators for the spin s ∈ {↑,↓} at the lattice sites μ and ν,
respectively. The corresponding hopping rate is denoted by
Jμν , where we have factored out the coordination number Z .
The second term describes the on-site repulsion U with the
particle number operators n̂↑

μ and n̂↓
μ. As possible experimen-

tal realizations, one could envision fermionic atoms in optical
lattices [53–57] or electrons in solid-state settings [58,59].

The above Hamiltonian (1) generates the internal unitary
evolution while the coupling to the Markovian environment
is described in terms of a master equation with the Lindblad
operators n̂μ,s and the coupling strength γ ,

∂t ρ̂ = i[ρ̂, Ĥ ] + γ
∑
μ,s

(
n̂μ,s ρ̂ n̂μ,s − 1

2
{n̂μ,s, ρ̂}

)
, (2)
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where we have used n̂2
μ,s = n̂μ,s for fermions. Thus, the

environment permanently monitors (i.e., weakly measures)
the number of particles n̂μ,s per lattice site μ for each spin
species s. Such an environment could be represented by a
bath of bosons that scatter off the fermions depending on their
position. For example, for atoms in optical lattices they could
be photons, and for electrons in solids they could be phonons.

From the above master equation (2), we may already infer
properties of the steady state ρ̂(t → ∞) = ρ̂∞, which should
commute with all the (self-adjoint) Lindblad operators n̂μ,s

and with the Hamiltonian Ĥ ; see, e.g., [60–62]. If we first
focus on the Lindblad operators n̂μ,s, the steady state ρ̂∞

μ of
each lattice site μ should be diagonal in the particle number
basis, i.e., it could be an arbitrary incoherent sum of the
zero-particle |0〉〈0|, one-particle |↑〉〈↑| and |↓〉〈↓|, as well as
two-particle |↑ ↓〉〈↑ ↓| states. However, due to the hopping
terms ∝J in the Hamiltonian Ĥ , the on-site particle numbers
n̂μ,s are no longer conserved separately, only the total numbers

N̂s =
∑

μ

n̂μ,s (3)

commute with Ĥ . They are related to the total number N̂ =
N̂↑ + N̂↓ and the z component of the total spin �̂z = (N̂↑ −
N̂↓)/2. Their (expectation) values are fixed by the initial
conditions. Here, we consider the case of half-filling for each
spin species (i.e., spin-unpolarized 〈�̂z〉 = 0), which also dis-
plays particle-hole symmetry. Hence, the steady state becomes
unique, ρ̂∞

μ ∝ 1, and corresponds to the infinite-temperature
limit.

The above master equation (2) can also be written in terms
of Liouville superoperators

∂t ρ̂ = 1

Z

∑
μ,ν

Lμ,νρ̂ +
∑

μ

Lμρ̂, (4)

where Lμ,ν contains the hopping term ∝Jμν from (1) while
the on-site interaction term ∝U from (1) as well as the
environment contribution ∝γ from (2) are encoded in the
local contribution Lμ.

III. HIERARCHY OF CORRELATIONS

Since the dynamics (2) can only be solved exactly for very
small lattices (see Sec. VIII), we have to introduce a suitable
approximation scheme. Here, we employ the hierarchy of
correlations [21–24,63,64] and consider the reduced density
matrices ρ̂μ for one site and ρ̂μν for two sites, etc. After
splitting off the correlations via ρ̂corr

μν = ρ̂μν − ρ̂μρ̂ν and so on,
we obtain for the evolution of the on-site density matrix,

∂t ρ̂μ = 1

Z

∑
ν

Trν

{
Lμ,νρ̂μρ̂ν + Lμ,νρ̂

corr
μν

} + Lμρ̂μ

= f1
(
ρ̂ν, ρ̂

corr
μν

)
. (5)

In analogy, the time evolution of the two-site correlations can
be derived from (4) and also depends on the on-site density
matrices as well as the three-site correlators,

∂t ρ̂
corr
μν = f2

(
ρ̂ν, ρ̂

corr
μν , ρ̂corr

μνσ

)
. (6)

To truncate this infinite set of recursive equations, we exploit
the hierarchy of correlations in the formal limit of large
coordination numbers Z 
 1. With completely the same argu-
ments as in [24], it can be shown that the two-site correlations
are suppressed via ρ̂corr

μν = O(1/Z ) in comparison to the on-
site density matrix ρ̂μ = O(Z0) and the three-site correlators
even stronger via ρ̂corr

μνσ = O(1/Z2), and so on. Note that the
derivation in [24] works in completely the same way here
because the environment acts locally, i.e., on each lattice site
separately, and thus only changes the local Liouvillian Lμ

in (4).
This hierarchy of correlations facilitates the following iter-

ative approximation scheme: To zeroth order in 1/Z , we may
approximate (5) via ∂t ρ̂μ ≈ f1(ρ̂ν, 0), which yields the mean-
field solution ρ̂0

μ. As the next step, we may insert this solution
ρ̂0

μ into (6) and obtain to first order in 1/Z the following
approximate set of linear and inhomogeneous equations for
the correlations:

∂t ρ̂
corr
μν ≈ f2

(
ρ̂0

ν , ρ̂
corr
μν , 0

)
. (7)

The solution of this set of equations describes the propaga-
tion (and damping) of the quasiparticles, and insertion back
into (5) then yields their backreaction onto the mean field.

IV. MEAN-FIELD ANSATZ

Let us study the propagation (and damping) of the quasi-
particles according to (7) for a concrete example. For the
mean-field solution ρ̂0

μ, we assume a homogeneous and spin-
symmetric (i.e., unpolarized) state, which can be described by
the general ansatz

ρ̂0
μ = p0|0〉〈0| + p1(|↑〉〈↑| + |↓〉〈↓|) + p2|↑↓〉〈↑↓|, (8)

with the probabilities for zero p0, one p1, and two particles
p2 on the lattice site μ. For the Fermi-Hubbard Hamilto-
nian (1) and the Lindblad operators n̂μ,s in (2), this ansatz
automatically satisfies the zeroth-order (mean-field) equation
∂t ρ̂

0
μ = f1(ρ̂0

ν , 0).
Since we want to study the Mott insulator state [2,3],

we assume half-filling 〈n̂↑
μ + n̂↓

μ〉 = 2p1 + 2p2 = 1. Together
with the normalization p0 + 2p1 + p2 = 1, this fixes all prob-
abilities except one, which can be parametrized by the double
occupancy D = 〈n̂↑

μn̂↓
μ〉 = p2. It vanishes in the Mott insulator

state p0 = p2 = 0, but in the infinite-temperature limit p0 =
p1 = p2, it tends to 1/4.

Note that, since the ansatz (8) obeys the zeroth-order
(mean-field) equation ∂t ρ̂

0
μ = f1(ρ̂0

ν , 0), the double occupancy
D is constant to lowest order (in 1/Z). However, including
the backreaction of the quasiparticles and their quantum or
thermal fluctuations onto the mean field, it will change in
general (see below).

V. QUASIPARTICLES

Inserting the ansatz (8) into Eq. (7) for the correlations,
we find the following set of relevant correlation functions (see
also [21]):

f 00
μν,s = 〈ĉ†

μ,s(1 − n̂μ,s̄) ĉν,s(1 − n̂ν,s̄)〉,
f 01
μν,s = 〈ĉ†

μ,s(1 − n̂μ,s̄) ĉν,sn̂ν,s̄〉,
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f 10
μν,s = 〈ĉ†

μ,sn̂μ,s̄ ĉν,s(1 − n̂ν,s̄)〉,
f 11
μν,s = 〈ĉ†

μ,sn̂μ,s̄ ĉν,sn̂ν,s̄〉, (9)

with s ∈ {↑,↓} denoting the spin and s̄ the opposite spin. All
other correlators vanish to first order (in 1/Z).

As we obtain the same dynamics for both spin species s,
we omit the spin index s in the following. Assuming spa-
tial homogeneity, we Fourier-transform the above correlation
functions, and (7) becomes

(i∂t + iγ ) f 00
k = Jk

2

(
f 10
k − f 01

k

) = −(i∂t + iγ ) f 11
k ,

(i∂t − U + iγ ) f 01
k = Jk

2

(
f 11
k − f 00

k

) − Jk

4
(1 − 4D)

= −(i∂t + U + iγ ) f 10
k . (10)

For time-independent parameters γ , Jk, U , and D, we may
diagonalize the above linear system of equations and thereby
obtain four eigenfrequencies. Two of them read

ω±
k = ±

√
U 2 + J2

k − iγ (11)

while the other two are simply ω0
k = −iγ . We see that all

eigenfrequencies acquire the same imaginary part −iγ , which
just corresponds to an exponential decay e−γ t . This describes
the damping of the quasiparticles induced by the coupling to
the environment.

VI. PRERELAXATION

Due to this exponential decay e−γ t , the correlation func-
tions approach the following asymptotic state (again assuming
that D is constant):

f 00
k,asy = J2

k

U 2 + J2
k + γ 2

1 − 4D

4
= − f 11

k,asy,

f 01
k,asy = Jk(U + iγ )

U 2 + J2
k + γ 2

1 − 4D

4
= (

f 10
k,asy

)∗
, (12)

which is independent of the initial state, i.e., the initial values
f 00
k (t = 0), f 01

k (t = 0), f 10
k (t = 0), and f 11

k (t = 0). As one
would expect, the correlations are suppressed for large γ and
go to zero in the limit γ → ∞.

However, this asymptotic state (12) differs from the final
steady state (corresponding to infinite temperature and van-
ishing correlations) discussed in Sec. II. Thus, it describes a
prerelaxed state and is not fully relaxed (thermalized) yet. Full
relaxation or thermalization requires taking into account the
backreaction (which changes D); see Sec. VII below. It is also
interesting to note that this asymptotic state (12) is different
from the ground state, even for γ = 0 and D = 0 [21].

The latter can be determined from (10) via an adiabatic
change of the hopping rate from J = 0 to a finite value. For
γ = 0, Eqs. (10) conserve the quantities

f 00
k + f 11

k = 0 (13)

as well as

f 01
k f 10

k + (
f 11
k

)2 − f 11
k

2
= 0. (14)

This leads to the ground-state correlations

f 01
k,ground = f 10

k,ground = Jk

4
√

U 2 + J2
k

(15)

and

f 00
k,ground = 1

4

⎛
⎝ U√

U 2 + J2
k

− 1

⎞
⎠ = − f 11

k,ground. (16)

Already for small Jk, we observe a factor of 2 difference from
the asymptotic state (12); see also [21,30].

A. Universality

In fact, in the limit of small γ , the above asymptotic
state (12) coincides with the prethermalized state after a
quantum quench, where one starts in the ground state with
J = 0 and then suddenly switches on J to its final value;
see, e.g., [21]. This coincidence seems to be a rather general
property. To understand why, let us write the linear system of
Eqs. (10) in matrix form,

∂t f k = Mk · f k − γ f k + sk, (17)

with a time-independent matrix Mk describing the Hamil-
tonian evolution, i.e., depending on Jk and U . Neglecting
backreaction, i.e., assuming that the double occupancy D =
〈n̂↑

μn̂↓
μ〉 is time-independent, the source term sk is also con-

stant. Then, due to the damping term γ , the correlations
approach the asymptotic state

f asy
k = (γ 1 − Mk)−1 · sk. (18)

Now, the limit γ → 0 could be problematic if the source term
sk had contributions in the kernel ker(Mk) of the matrix Mk,
i.e., the subspace of zero eigenvalue. In this case, the linear
evolution according to (17) without environment γ = 0 would
imply linearly growing modes—which indicate an instability
(e.g., if the mean-field ansatz ρ̂0

μ does not describe a stable
stationary state).

The kernel of Mk is spanned by the vectors
(−U, Jk, Jk,U )T and (Jk, 0, 0, Jk )T , which is orthogonal
to the source term sk ∝ (0, 1,−1, 0)T . Thus we have
sk ⊥ ker(Mk) and a linear growth of the modes cannot
occur. Note that such a linear growth, when extrapolated to
large times, would eventually lead to inconsistencies (such as
negative probabilities). In the various scenarios investigated
by us (see also [21]), we did not encounter this problem, i.e.,
we always found sk ⊥ ker(Mk).

B. Prethermalization

In the subspace orthogonal to the kernel ker(Mk) we may
invert the matrix Mk, and the limit γ → 0 of the asymptotic
state (18) reads f asy

k = −M−1
k · sk. Now let us compare this

state to the prethermalized state after a quantum quench
(without environment). If we start initially in the ground state
for J = 0, we have vanishing correlations initially, f k(t =
0) = 0. At time t = 0, we switch on the hopping rate J . The
time evolution afterward can be obtained by solving (17) for
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FIG. 1. Prethermalization and prerelaxation dynamics of the
particle-particle correlator f 11

μν,s for next-to-nearest neighbors μ and
ν in a cubic lattice without backreaction. The solid black curve
corresponds to a quench without environment (prethermalization),
where J is switched suddenly from zero to 0.4U . The dashed line
denotes the ground state at that value. The gray curve represents
the dynamics for fixed J = 0.4U after starting in the ground state
and switching on the coupling γ = 0.05U to the environment (prere-
laxation). Both curves approach approximately the same asymptotic
state f 11,asy

μν,s ≈ 10−3.

γ = 0 and vanishing initial correlations, which yields

f k(t ) = (exp {Mkt} − 1) · M−1
k · sk. (19)

As a result, the Fourier modes f k(t ) of the correlations os-
cillate with the (nonzero) eigenfrequencies of the matrix Mk.
The Fourier transformation back to position space then in-
volves a sum over many Fourier modes with different oscillat-
ing phases, which gives the usual prethermalization dynamics
as in Fig. 1. The long-time limit then corresponds to the time
average f k where the oscillating exponentials cancel f k =
−M−1

k · sk. Hence, the coincidence of the prethermalized state
(after a quench) and the γ → 0 limit of the asymptotic state
with environment seems to be a general phenomenon—as
long as arguments along the lines explained above apply.

Note that the simple matrix form (17) applies to cases in
which all correlations are damped at the same rate γ . While
this is true for the system under investigation [cf. (10)], one
might have different damping rates γ1,2,... for other scenarios.
However, this just amounts to replacing γ 1 by a different
matrix (assumed to be positive-definite) while the rest of the
arguments apply in the same way.

VII. BACKREACTION

So far, we have neglected the backreaction of the quantum
or thermal fluctuations of the quasiparticles onto the mean
field and assumed that ρ̂0

μ and thus the double occupancy
D are constant. To study this backreaction, we insert the
(generally time-dependent) solutions f 00

k , f 01
k , f 10

k , and f 11
k

back into (5), which gives

i∂tD = 2

N

∑
k

Jk
(

f 01
k − f 10

k

)
. (20)

We see that even the asymptotic state (12) can induce a change
of D provided that γ �= 0. For example, starting in the Mott
insulator phase with zero or small D, it would slowly grow
due to local on-site heating induced by the coupling to the
environment.

However, this growth rate is much slower than the damping
of correlations and quasiparticles with their decay rate γ .
From the above equation (20), we may estimate that this local
on-site heating occurs on much longer timescales,

τthermal ∼ U 2

J2

Z

γ

 1

γ
= τdecay, (21)

where the factor of Z stems from the Fourier transform
(assuming an isotropic lattice).

For late times t 
 τthermal, the double occupancy tends to
1/4 and thus all correlations between lattice sites vanish, as we
may infer from (12). This final state ρ̂μ ∝ 1 corresponds to the
infinite-temperature limit already discussed in Sec. II, which
is consistent with the fact that the considered Markovian
environment acts as an infinite temperature heat bath; see
Fig. 2.

VIII. HUBBARD DIMER

To test the reliability of our approximation scheme, we also
considered the exactly solvable case of the two-site Fermi-
Hubbard model with one spin-up and one spin-down particle,
i.e.,

Ĥ = −Jd

∑
s

(ĉ†
2,sĉ1,s + ĉ†

1,sĉ2,s) + U
∑

μ=1,2

n̂↑
μn̂↓

μ. (22)

To simplify the analysis further, we consider states that are
fully symmetric with respect to a permutation of the lattice
sites μ = 1 and ν = 2 and are invariant under spin-flips (i.e.,
unpolarized). Again, the on-site matrices ρ̂1 = ρ̂2 can be fully
parametrized by the double occupancy

D = 〈n̂1,sn̂1,s̄〉 = 〈n̂2,sn̂2,s̄〉 (23)

via the ansatz (8). Furthermore, as we only have one particle
per spin species, the particle-particle and hole-hole correlators
vanish, and only the symmetrized particle-hole correlator

F = 〈ĉ†
1,sn̂1,s̄ ĉ2,s(1 − n̂2,s̄)〉 + 〈ĉ†

2,sn̂2,s̄ ĉ1,s(1 − n̂1,s̄)〉 (24)

survives. From the symmetries of the dimer state, it follows
that F + F∗ = 2〈ĉ†

1,sĉ2,s〉. Finally, the only remaining nonzero
expectation values are two higher-order correlators,

S = 〈ĉ†
1,sĉ1,s̄ ĉ

†
2,s̄ ĉ2,s〉, (25)

H = 〈c†
1↑c†

1↓c2↑c2↓〉 + 〈c†
2↑c†

2↓c1↑c1↓〉. (26)

With these definitions, the dimer dynamics is governed by the
equations

i∂tD = Jd (F∗ − F), (27)

(i∂t + U + iγ )F = −4JdD − 2JdS + JdH + Jd , (28)

(i∂t − U + iγ )F∗ = 4JdD + 2JdS − JdH − Jd , (29)

(i∂t + 2iγ )S = Jd (F∗ − F), (30)

(i∂t + 4iγ )H = −2Jd (F∗ − F). (31)

In general there is no simple closed expression for the
eigenvalues and eigenvectors of this linear set of equations.
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〈ĉ† μ
,s
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FIG. 2. Environment-induced relaxation dynamics of the correlation function 〈ĉ†
μĉν〉 for nearest neighbors including backreaction for the

infinite cubic lattice (left column) and the Hubbard dimer (right column). In both cases, the coupling constant γ is chosen as γ = U/20. For
the infinite cubic lattice (left column), we choose J = U/10, and for the Hubbard dimer (right column), we choose Jd = J/4 = U/40 such
that the ω± coincide with the eigenfrequencies (11) for k = 0. As in Fig. 1, the black curves correspond to quantum quenches, where both J
(or Jd ) and γ are suddenly switched on, while the gray curves start in the ground state at those values of J (or Jd ), and describe the evolution
after γ is switched on. At short times (top row), we observe oscillations (with a frequency set by U ) that decay with the damping rate γ .
Thus, at intermediate times (middle row), the state approaches a quasistationary state, which is quite independent of the initial conditions. At
late times (bottom row), all correlations decay due to local on-site heating caused by the backreaction, and the system approaches the final
infinite-temperature state.

Without dissipation, the two nonzero eigenvalues are ω± =
±

√
16J2

d + U 2, in close analogy to (11).
To include the coupling to the environment, we consider

the strongly interacting regime where Jd � U . Then, four
eigenvalues acquire imaginary parts ∼γ and the correlation
functions decay on a timescale of order 1/γ to a prerelaxed
state, which is given by

Dasy = Sasy = −Hasy

2
= 2J2

d

16J2
d + U 2

, (32)

Fasy = F∗
asy = JdU

16J2
d + U 2

, (33)

which is analogous to (12).
The remaining eigenvalue corresponds to the evolution of

the double occupancy D, cf. (21), and is much smaller,

λ = − 8iγ J2
d

U 2 + γ 2
+ O

(
J3

d

U 3

)
⇒ |λ| � γ . (34)

The full relaxation or thermalization is governed by the above
eigenvalue and thus occurs on much longer times. Again, due
to local on-site heating, the system approaches an infinite-

temperature state ρ̂12 ∝ 1, which corresponds to D = 1/4 and
F = S = H = 0.

Note that, similar to our investigations based on the hierar-
chy of correlations, the asymptotic state of the Hubbard dimer
(18) is different from its ground state,

Dground = Sground = −Hground

2

= 1

8

⎛
⎝1 − U√

16J2
d + U 2

⎞
⎠, (35)

Fground = F∗
ground = Jd√

16J2
d + U 2

. (36)

IX. CONCLUSIONS

As a prototypical example for a strongly interacting quan-
tum many-body system, we consider the Fermi-Hubbard
model (1) and couple it to a Markovian environment (2),
which permanently performs weak measurements of the parti-
cle numbers n̂↑

μ and n̂↓
μ for each lattice site μ. Via the hierarchy

of correlations, we derive the evolution equations (10) for the
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correlations, which are linear to first order (in 1/Z), as well as
their backreaction (20) onto the mean field.

As expected, the coupling γ to the environment induces an
imaginary part of the eigenfrequencies (11) leading to a decay
of the quasiparticles and tends to suppress the correlations.
Quite surprisingly, this damping mechanism also induces the
phenomenon of prerelaxation quite analogous to prethermal-
ization after a quantum quench. For small γ , the correlations
even approach the same asymptotic state as after a quench. As
our general arguments from (17) to (19) indicate, this seems
to be a general phenomenon and shows that the environment-
induced decoherence and damping of quasiparticles has a very
similar effect to the dephasing of quasiparticles after a quench.

Taking the backreaction (20) into account, we find that
the system eventually approaches a thermal state of infinite
temperature. However, this on-site heating process is much
slower and requires timescales (21) much longer than the
intermediate timescale O(1/γ ) of prerelaxation. Note that the
emergence of different timescales in relaxation or thermaliza-
tion processes has already been observed in other systems,
e.g., for weak (or vanishing) interactions; see, e.g., [65–78].

Finally, we compared the results of our 1/Z expansion
with the exactly solvable case of two sites (Hubbard dimer)
and found very similar results; see Fig. 2. We also consid-
ered the Mott-Néel state displaying antiferromagnetic spin
ordering (see the Appendix) and found analogous behavior.
In summary, the emergence of several stages characterized
by different timescales in relaxation/thermalization processes
seems to occur quite often, at least as long as some sort of
linearized quasiparticle description of the form (17) is a good
approximation.
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APPENDIX

Mott-Néel state

The propagation and damping of the quasiparticles is de-
termined by the hierarchical equations up to first order in 1/Z ,

i∂t f ab
μν,s = 1

Z

∑
κ,c

Jμκ

〈
n̂a

μ,s̄

〉
f cb
κν,s − 1

Z

∑
κ,c

Jνκ

〈
n̂b

ν,s̄

〉
f ac
μκ,s

+ Jμν

Z

[〈
n̂a

μ,s̄

〉〈
n̂1

ν,sn̂
b
ν,s̄

〉 − 〈
n̂b

ν,s̄

〉〈
n̂1

μ,sn̂
a
μ,s̄

〉]

−
[

(−1)b − (−1)a

2
U + iγ

]
f ab
μν,s + O(1/Z2),

(A1)

where we used the shorthand notation n̂1
μ,s = n̂μ,s and n̂0

μ,s =
1 − n̂μ,s. The correlations induce a backreaction onto the
mean field, which changes the double occupancy according
to

i∂tD = 1

Z

∑
κ,s

Jμκ

(
f 01
κμ,s − f 10

μκ,s

) + O(1/Z2). (A2)

After a Fourier transformation of (A1) for a spatially homo-
geneous system at half-filling, one obtains the set of equations
(10).

Since the hierarchical set of equations (A1) is derived in
real space, we are not restricted to spatially homogeneous sys-
tems. For example, the fermionic Hubbard system in a cubic
or hypercubic lattice prefers to be in a staggered Mott-Néel
state with sublattices A and B if the temperature is sufficiently
low. Assuming to lowest order a perfect staggering, 〈n̂A

s 〉 =
〈n̂B

s̄ 〉 = 1, the Fourier components of the correlation functions
satisfy the equations

(i∂t + iγ ) f 00,AA
k,s = Jk

(
f 10,BA
k,s − f 01,AB

k,s

)
, (A3)

(i∂t + iγ ) f 11,BB
k,s = Jk

(
f 01,AB
k,s − f 10,BA

k,s

)
, (A4)

(i∂t − U + iγ ) f 01,AB
k,s = Jk

(
f 11,BB
k,s − f 00,AA

k,s

)−Jk, (A5)

(i∂t + U + iγ ) f 10,BA
k,s = Jk

(
f 00,AA
k,s − f 11,BB

k,s

)+Jk. (A6)

The system of equations can be diagonalized and we obtain,
similar to Eq. (11), two k-dependent eigenfrequencies

ω±
k = ±

√
U 2 + 4J2

k − iγ (A7)

and two k-independent eigenfrequencies, which read ω0
k =

−iγ . After a quantum quench, the correlation functions ap-
proach the prethermalized state

f 11,BB
k,s = − f 00,AA

k,s = 2J2
k

γ 2 + 4J2
k + U 2

, (A8)

f 01,AB
k,s = (

f 10,BA
k,s

)∗ = Jk(U + iγ )

γ 2 + 4J2
k + U 2

, (A9)

which is independent of the initial correlations fk(t = 0).
Again, the asymptotic state is different from the ground state,
even for γ = 0, where we have

f 11,BB
k,s = − f 00,AA

k,s = 1

2

⎛
⎝1 − U√

4J2
k + U 2

⎞
⎠, (A10)

f 01,AB
k,s = f 10,BA

k,s = Jk√
4J2

k + U 2
. (A11)
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